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The gravitational settling of small dense particles (with fall speed vT , response time τp)
past an isolated spherical vortex (radius a, speed U ) or a random distribution of
spherical vortices translating vertical upwards, is examined. As particles sediment
past a vortex, they are permanently displaced vertically and laterally a distance X

and Y , respectively. The bulk settling properties of the particles are expressed in terms
of the weighted moments of displacement, denoted by Dp , Mxx, Myy and corresponding
to the integral of X, X2/2, Y 2/2, respectively over the particle sheet. When the particle
Stokes number St = Uτp/a → 0, the particles are inertialess. Particles starting outside
the vortex are excluded from a spherical shadow region when vT /U > 3/2. When
vT /U < 3/2, particles passing close to the particle stagnation points (in the frame
moving with the vortex) are held up for a long time relative to particles far from
the vortex, but are not displaced laterally. In an unbounded flow, the particle drift
volume, Dp , is calculated using a geometrical argument, Mxx = 25U 2πa4/8(vT + U )2,
and Myy = 0. As vT /U → 0, the results of Darwin (1953) are recovered. Results
for finite values of St are calculated numerically. The effect of inertia is shown to
substantially increase the particle residence time near the vortex because particles
overshoot the particle stagnation point, and there is a shadow region within and
behind the vortex. Dp , Mxx, and Myy all substantially increase with the particle
Stokes number. These results are applied to calculate the bulk settling velocity and
the dispersivity of particles sedimenting through a random distribution of vortices
translating vertically in a bounded flow. This is done by combining information of
the particle displacements with a statistical model of their encounter with a vortex.
Inertialess particles (St = 0) do not experience the upwards flow within the vortex
and the fractional increase in fall speed is proportional to the volume of the shadow
region. As St increases, particles overshoot the particle stagnation point, increasing
their residence time and so decreasing the bulk settling fall speed. Particle inertia
significantly increases the vertical dispersivity of dense particles compared to fluid
particles, but for high vT , particles disperse vertically more slowly than fluid particles.

1. Introduction
Coherent flow structures and turbulence stir up and disperse dense particles in a

wide range of chemical engineering and environmental flows. In some problems the
coherent structures are deliberately created by the container geometry or the forcing
of the flow (e.g. oscillatory flow and baffled reactors or stirred tanks (Roberts &
Mackley 1996)), in others they are spontaneously generated by an intrinsic instability
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of the system (e.g. bubbling gas bubbles in fluidized beds (Rowe 1962)), or are
generated in three-dimensional flows by an energy cascade to smaller length scales
(Vincent & Meneguzzi 1994). These coherent vortical structures generate regions of
significant strain and are the primary agents for dispersing and mixing particles.

Progress has be made in understanding the bulk settling speed and dispersion of
dense particles in complex structured flows by calculating Lagrangian information of
individual particle dynamics so that closures for dilute particle-laden flows can be
developed and fed into Eulerian models of dispersed two-phase flows. The starting
point for this approach is calculation of the Lagrangian motion of a single particle
relative to a vortex. This has been previously exploited successfully by Dávila &
Hunt (2001) for small particles in vortices, and by Batchelor & Nitsche (1994)
and Gilbertson & Yates (1995) for understanding bubbles in gas-fluidized beds.
Information about the individual particle trajectories can then be statistically averaged
to obtain bulk properties for the flow field (see Eames & Bush 1999; Dávila & Hunt
2001).

One of the advantages of Lagrangian models is that they enable bulk properties
to be connected to the individual particle dynamics. For example, a fundamental
problem for dilute particle-laden flows is whether particles sediment faster or slower
in a turbulent flow. The vast literature on particles sedimenting in a turbulent field
has given slightly contradictory answers to this question. This has arisen in part
from slightly different definitions of an ‘average’ fall velocity and exactly how this is
calculated. Dávila & Hunt (2001) described two different approaches to the averaging:
an ensemble spatial average of the particle velocity field, and one based on an average
particle residence time. In an effort to quantify the bulk settling velocity of particles
in a turbulent flow, Dávila & Hunt (2001) used a Rankine vortex to represent the
intense vortical tubes observed in direct numerical simulations (Vincent & Meneguzzi
1994) and then examined how initially horizontal sheets of particles are deformed as
they sediment past it. By averaging over the collective effect of a large number of
such vortices, Dávila & Hunt (2001) showed how the bulk settling velocity critically
depends on the particle Froude number, which controls whether particles are pushed
to the faster moving side of the vortex (which increases the settling velocity – see
Maxey 1987) or are hindered as they overshoot a particle stagnation point (which
reduces the settling velocity). Dávila & Hunt (2001) were able to capture this range of
phenomena in a single Lagrangian model because they accounted for the significant
deviation of the particle trajectory from the vertical owing to the occurrence of particle
stagnation points. Their conclusions are supported by the experimental results of Srdic
(1999).

Another fundamental problem concerning turbulent dilute particle-laden flows
is whether particles disperse faster or slower than fluid particles. The particles’
dispersivity is characterized by a highly anistropic tensor, D(p), even when the forcing
flow is homogeneous and the fluid dispersivity tensor, D(f ), is isotropic (Csanady
1963). Most studies draw concepts directly from the turbulence literature, where the
dispersivity is expressed in terms of the Lagrangian velocity autocorrelation function
(Taylor 1928). Soo (1967) developed a statistical description of aerosol particles (in the
absence of buoyancy forces) forced by a random flow and showed how small particles
disperse at the same rate as fluid particles. This argument is now known to be incorrect
because it neglected spatial variations in the flow field. Wells & Stock (1983) proposed
expressions for the velocity autocorrelation functions seen by a dense particle, and
this approach provides a good comparison with numerical calculations (e.g. Launay,
Huilier & Burnage 1999). Pasquill (1974, p. 114) proposed that particle dispersivity
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is isotropic when D(p) = D(f )/(1 + vT /
√

u′2) where
√

u′2 is a measure of the velocity
variance of the flow; Tchen (1947) proposed that D(p) = D(f )/(1+τp/τL), where τp and
τL are, respectively, the particle response time and Lagrangian correlation time of the
flow. Both expressions suggest that the particle dispersivity decreases monotonically
with particle response time. Hunt, Perkins & Fung (1994) analytically studied a one-
dimensional model of particles sedimenting through a random flow, and confirmed
many of their conclusions numerically. They showed that when particles sediment
with a speed comparable to the characteristic translation speed of the vortices, the
vertical particle dispersivity D(p)

11 was greater than the vertical particle dispersivity D(f )
11

and this difference increased with St; for large vT , the particle dispersivity became
much smaller than the fluid dispersivity. The difficulty with calculating dispersivity
from velocity autocorrelation functions is that it tends to mask the underlying physics,
particularly how straining and vortical regions in a turbulent flow separately influence
D(p). In this paper, both a Lagrangian and velocity autocorrelation method are applied
to study particle dispersion.

The motivation for this paper is to explore how the bulk settling speed and disper-
sivity of particles are influenced by localized coherent vortical structures. Detailed
information about particle displacement when it encounters an isolated vortical
structure is combined with a statistical description of how the particle encounters the
vortex to calculate the bulk settling properties of particles. For this, the methodology
of Dávila & Hunt (2001) is developed to account for the effect of boundedness of the
flow and the convergence of certain integrals. Work dealing with fluid displacement or
drift in potential flows (Darwin 1953), the concept of a partial drift volume (Eames,
Belcher & Hunt 1994), and its application to calculating mechanical dispersivity
(Eames & Bush 1999) are employed.

The paper is structured as follows: the particle equation of motion and flow field
generated by a spherical vortex are described in § 2, along with the definition of the
particle drift volume and second moments of displacement. In § 3, an asymptotic
analysis of particle displacement and particle sheet deformation is presented for
particles with small inertia. These results are applied in § 4 to estimate the bulk
settling speed of particles and the longitudinal dispersivity due to a random
collection of spherical vortices moving vertical upwards. General conclusions are made
in § 5.

2. Mathematical model
The dynamics of small, dense, spherical particles settling in the vicinity of an

isolated Hill’s spherical vortex steadily translating vertically against gravity will be
examined.

2.1. Particle equation of motion

Particles moving with velocity v in an unsteady flow u experience a number of forces
(Magnaudet & Eames 2000), including a drag force FD , buoyancy force Fg , added-
mass force FA, inertial force FI , shear induced lift FS and history force FH . In a
number of different cases, it has been demonstrated analytically or numerically (e.g.
Magnaudet, Rivero & Fabre 1987; Hunt & Eames 2002) that the total force acting
on the body may be reasonably estimated by adding together viscous and inviscid
contributions and the force acting on the particle is approximately

π

6
d3ρp

dv

dt
= FD + Fg + FA + FI + FS + FH . (2.1)
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The drag force is

FD = 1
8
ρf πd2CD|u − v|(u − v), (2.2)

where the drag coefficient CD(Rep) is a function of Reynolds number Rep = d|v−u|/ν
based on the particle slip velocity. When Rep � O(1), Stokes drag law (Batchelor 1967)

CD =
24

Rep

, (2.3)

can be applied.
The net buoyancy force arising from the density contrast between the particle and

fluid is

Fg = −(ρp − ρf )
π

6
d3g x̂. (2.4)

When the particle accelerates, it must also locally accelerate the fluid, and this gives
rise to the added-mass force

FA = ρf Cm

πd3

6

(
Du
Dt

− dv

dt

)
, (2.5)

which is important when the density of the particle is comparable to or less than
the density of the ambient fluid. The added-mass coefficient Cm is determined by the
particle geometry and takes the value of 1/2 for spherical particles. The inertial force
is

FI = ρf

π

6
d3 Du

Dt
, (2.6)

and its origin lies in the force induced by gradients of the ambient pressure field
(Magnaudet & Eames 2000). The shear-induced lift force is

FS = ρf CL

π

6
d3(u − v) × ω, (2.7)

and physically arises in high-Reynolds-number flows owing to the stretching of
vortical tubes to produce a trailing horse-shoe vortex (Auton 1987), or, in the case of
low-Reynolds-number flows (Saffman 1965), asymmetric diffusion of vorticity in the
external ambient flow. The history force, FH , is negligible when the response time of
the particles is comparable to, or shorter than, the advective timescale of the flow
field, and is neglected in this treatment of particle dynamics described here.

By combining the above information, the particle motion is described by the
equations:

dx
dt

= v, (2.8)

dv

dt
=

β

(β + Cm)τp

(u − v − vT x̂) +
1 + Cm

β + Cm

Du
Dt

+
Cm

β + Cm

ω × (v − u), (2.9)

where the fall velocity vT and the particle response time τp are related to the relative
density of the particle to the fluid (ρp/ρf ) and particle diameter d through

vT =
g(ρp/ρf − 1)d2

18ν
, (2.10)

and

τp =
d2ρp

ρf 18ν
. (2.11)
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This formulation is identical to Dávila & Hunt (2001), although they chose to
incorporate the density contrast ((β − 1)/β) between the fluid and particle into their
definition of the response time. The benefit of the above form of the equation of
motion, is that it enables ‘rigid’ fluid particles to be followed when β = 1.

2.2. Flow generated by a Hill spherical vortex

A cylindrical coordinate system (x, y) is employed, with x parallel to gravity and y

the distance from the centreline of the vortex. The flow u = (ux, uy) is expressed in
terms of a Stokes streamfunction Ψ through

u =

(
1

y

∂Ψ

∂y
, −1

y

∂Ψ

∂x

)
. (2.12)

The streamfunction describing the flow generated by a spherical vortex of radius a,
having a centre h = Ut , is (Milne-Thomson 1968, p. 578),

Ψ (x, y) =




− 3U

4a2

(
y4 + y2(x − h)2 − 5

3
y2a2

)
r < a,

Uy2a2

2((x − h)2 + y2)3/2
, r > a,

(2.13)

where r =
√

(x − h)2 + y2 is the distance from the vortex centre. Explicit use is made
later of the velocity field: within the vortex (r < a),

ux = −3U

4

(
4

(y

a

)2

+ 2

(
x − h

a

)2

− 10

3

)
, uy =

3U

2a2
y(x − h), (2.14)

and outside the vortex (r > a)

ux =
Ua3

2

2(x − h)2 − y2

((x − h)2 + y2)5/2
, uy =

3Ua3y(x − h)

2((x − h)2 + y2)5/2
. (2.15)

The external flow corresponds to a rigid sphere of radius a moving with speed U .
Inside the vortex, the circulation associated with a fluid element, Γ = ωθ/y, is

uniform (as required by the Batchelor–Proudman theorem) so that the azimuthal
component of vorticity is proportional to the distance from the centreline,

ωθ =
15Uy

2a2
. (2.16)

Outside the vortex, the flow is irrotational and ω = 0.
The particle equation of motion is rendered dimensionless using the characteristic

length and velocity scales corresponding to the vortex radius a and rise speed U :
writing ṽ = v/U , ũ = u/U , x̃ = x/a, t̃ = Ut/a, (2.8) and (2.9) reduce to

dx̃
dt̃

= ṽ, (2.17)

dṽ

dt̃
=

β

(β + Cm)St

(
ũ − ṽ − vT

U
x̂
)

+
1 + Cm

β + Cm

Dũ
Dt̃

+
15Cm

2(β + Cm)
ỹθ̂ × (ṽ − ũ)H(1 − r̃),

(2.18)

where the Heaviside step function H(1 − r̃) is unity within the vortex and zero
outside. The equation contains three dimensionless groups: St = τpU/a, β = ρp/ρf

and vT /U . We specifically focus on dense particles, where the limit β � 1 is applied.
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Figure 1. Schematic of a sheet of particles sedimenting past a spherical vortex translating
vertically upwards.

The analytical results developed in this paper for St→ 0, collapse in terms of vT /U ,
and for this reason we discuss the solutions in these two variables, rather than the
particle Froude number, which forms the basis of the discussion by Dávila & Hunt
(2001).

2.3. Deformed particle sheets and moments of displacement

Figure 1 shows a schematic of the problem considered. A sheet of particles is released
at t = 0 a distance hL far above the vortex. In the absence of the vortex, a particle
starting at (hL, y0) sediments with speed vT and its subsequent position is x = hL−vT t ,
y = y0. The effect of a translating vortex is to permanently displace the particles both
vertically and laterally a distance X and Y , respectively, where

X =

∫ ∞

0

(vx + vT ) dt = lim
t→∞

(x − hL + vT t), Y = lim
t→∞

(y − y0). (2.19)

Since the flow perturbation caused by the vortex is localized, decaying with distance r

from the vortex as ∼ Ua3/r3, the permanent displacement (X, Y ) is finite everywhere
even when vT /U = 0, except on the centreline. This is in contrast to the model of
Dávila & Hunt (2001), where the flow field generated by a Rankine vortex decays so
slowly with distance that the displacement field is not finite when vT /U = 0.

The particle drift volume (which Dávila & Hunt (2001) refer to as the drift integral)
associated with a wide sheet of particles starting infinitely far in front of the vortex
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and falling an infinite distance past the vortex is defined here by

Dp = lim
hL/yR→∞

∫ yR

0

X dA, (2.20)

where dA = 2πy0 dy0. The limit hL/yR → ∞ is imposed to ensure that Dp is single
valued in unbounded flows. This is a subtle feature of drift volumes which has been
discussed by Darwin (1953), Benjamin (1986), and Eames et al. (1994). When the
flow is bounded by channel walls, there is an additional contribution to the vertical
particle displacement which must also be considered and is discussed in § 3.3.

The particle displacement decays sufficiently rapidly with y0 that the second
moments of displacement defined by

Mxx =

∫ ∞

0

1
2
X2 dA, Myy =

∫ ∞

0

1
2
Y 2 dA, (2.21)

are finite and independent of hL when the particle sheet starts far in front of the
vortex.

For the vertical flow past a random collection of rigid bodies, Eames & Bush (1999)
related the longitudinal fluid dispersivity D(f )

11 for high-Péclet-number flows to Mxx.
Dávila & Hunt (2001) showed how the bulk settling speed of dense particles is related
to the particle drift volume Dp , but because of the slow decay of the flow perturbation
for a Rankine vortex, the methodology described here cannot be applied to study
dispersion by a random collection of Rankine vortices. We extend these concepts in
§ 4 to relate the bulk settling properties of particles through a random collection of
vortices to the moments of displacement defined above.

3. Dynamics of small dense particles settling near a spherical vortex
3.1. Inertialess particles (St = 0)

When St =0, the particles are inertialess and sediment relative to the local flow
according to

v = u − vT x̂, (3.1)

(e.g. see Maxey 1987). In the frame moving with the vortex the flow is steady and the
particle paths can be expressed in terms of a particle streamfunction, Ψp:

Ψp =




− 3U

4a2

(
y4 + y2(x − h)2 − 5

3
y2a2

)
− 1

2
y2(U + vT ), r � a,

Uy2a3

2((x − h)2 + y2)3/2
− 1

2
y2(U + vT ), r > a.

(3.2)

The particle streamfunction is constant along particle trajectories and far above or
below the vortex, tends to the limiting value of

Ψp ≡ − 1
2
y2

0 (U + vT ), (3.3)

where y0 is the initial distance of the particle from the centreline. According to
(3.2) and (3.3) inertialess particles are not permanently displaced laterally (i.e. Y = 0).
Particles starting far in front of the vortex and greater than a distance a(vT /(U+vT ))1/2

from the centreline do not enter the vortex, while particles entering the vortex
encounter a spherical shadow region of radius

R = a(1 − 2vT /3U )1/2, (3.4)
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from which they are excluded. For vT /U > 3/2, particles sediment through the entire
vortex and the shadow region disappears.

The particle drift volume can be calculated by exploiting the geometrical argument
of Yih (1985). When the particle sheet starts infinitely far infront of the vortex and
the vortex translates an infinite distance, the drift volume is

Dp =
4πµ

vT + U
− VS. (3.5)

From (3.2), the volume of the shadow region is VS = 4πR3/3 and the strength of
the dipole moment characterizing the particle streamlines far from the vortex is
µ = (1+Cm)UV/4π (where Cm = 1/2). Substituting these expressions into (3.5) yields

Dp =
2πa3

vT /U + 1
− 4πa3

3

(
1 − 2

3

vT

U

)3/2

(3.6)

for vT /U < 3/2, and

Dp =
2πa3

vT /U + 1
(3.7)

for vT /U � 3/2. As vT /U increases from zero, Dp initially increases because the
volume of the shadow region (second term on the right-hand side of (3.6)) decreases
faster than the dipole moment (first term on the right-hand side of (3.6)) which
characterizes the far-field flow. For large values of vT /U , the vertical particle
displacement decreases because particles spend less time near the vortex; thus the
particle drift volume has a maximum value at vT /U =1.398 of 0.810πa3, which is
larger than Darwin’s drift volume (2πa3/3).

Close to the centreline (y0/a 	 1), the vertical displacement is controlled by the
particle streamline curvature near the particle stagnation points (PSPs), so it can be
shown (Eames et al. 1994) that

X(y0) ≈ 4a(1 − 2vT /3U )1/2

3
log

(
2a(1 − 2vT /3U )1/233/4

y0

)
. (3.8)

From (3.2), the particle streamlines far from the centreline (y0/a � 1) are equivalent
to the streamlines past a sphere of radius R, so the vertical particle displacement is
(Eames et al. 1994)

X(y0) ≈ 9πa6

64(vT /U + 1)2y5
0

. (3.9)

When vT /U � 1, the particles sediment with an approximately straight trajectory.
In this limit, the vertical displacement is

X(y0) =

∫ ∞

0

(vx(X + hL − (vT + U )t, y) + vT ) dt

≈
∫ ∞

0

ux(hL − (vT + U )t, y0) dt

=
5a

vT /U + 1

(
1 − y2

0

a2

)3/2

. (3.10)

Particles which do not pass through the vortex (y0/a > 1) suffer a negligible permanent
vertical displacement because they experience equal positive and negative flow
perturbations which cancel each other out. When y0/a � 1, the vertical symmetry
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of the flow perturbation is broken and the particles experience a slightly higher
vertical flow inside the vortex and thus are displaced vertically upwards as described
by (3.10). The corresponding second moments of displacement are

Mxx =
25πa4

8(vT /U + 1)2
, Myy = 0. (3.11)

Equation (3.7) can also be recovered from (3.10). For inertialess, neutrally buoyant
particles (vT = 0), Dp = 2πa3/3, Mxx = 0.38a4 and Myy = 0 (Eames & Bush 1999).

3.2. Weakly inertial particles (St 	 1)

When St 	 1, the particle velocity

v ∼ u − vT x̂ + τp

(
∂u
∂t

+ u · ∇u − vT

∂u
∂x

)
(3.12)

(see the derivation by Maxey 1987). The divergence of the particle velocity field is
then

∇ · v = τp

(
∇2

(
1
2
u2

)
− ∇ · (u × ω)

)
. (3.13)

The consequence of inertia is therefore to cause the particle trajectories to diverge
or converge (and therefore cross) and (3.13) shows that crossing trajectories are
intimately related to the presence of vorticity. The region corresponding to ∇ · v < 0,
is

|x − h| <
√

4/3|y|, (x − h)2 + y2 <a2, (3.14)

while outside this region and the vortex, ∇ · v > 0. The effect of inertia leads to a
permanent lateral displacement which in the limit of vT /U � 1 is approximately

Y (y0) ≈ − τp

vT + U

∫ ∞

−∞

(
ux

∂

∂x
+ uy

∂

∂y

)
uy dx. (3.15)

Substituting (2.14) and (2.15) into the above equation yields

Y (y0) ≈




2aSt

1 + vT /U

∫ sin−1(y0/a)

0

(
15

4
sin6 θ − 3sin8 θ

)
dθ,

− 2aSt

1 + vT /U

(
1 − y2

0

a2

)1/2
y0

a

(
15

4
− 9

2

y2
0

a2

)
y0 � a.

15πa7St

32(1 + vT /U )y6
0

y0 >a.

(3.16)

The lateral displacement scales as ∼ aSt/(1 + vT /U ) and is extremely localized,
decaying rapidly from the centreline as ∼ a7St/y6

0 (1 + vT /U ). Particles passing close
to or far from the centreline, spend most of their time in a region where ∇ · v � 0 so
that Y � 0.

The weighted moment of lateral displacement, calculated numerically by substitu-
ting (3.16) into (2.21), is

Myy ∼ 1.21πa4St2

(vT /U + 1)2
. (3.17)

Thus the weighted moment Myy is sensitive to the particle Stokes number, even for
large settling velocities, while the influence of weak inertia on Mxx is negligible.
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3.3. Reflux contributions: the effect of bounding walls

In an unbounded flow, the integral of vertical displacement across the entire flow,∫
A∞

X dA, is non-convergent, and for this reason the limiting constraint that the
particle sheet starts infinitely far infront of the vortex is applied in the evaluation of
the particle drift volume (see (2.20)). This is a well-known feature of drift volumes,
being related to the slow decay of the velocity perturbation in unbounded flows,
and has been discussed previously by Benjamin (1986) and Eames et al. (1994). In a
bounded flow (of cross-sectional area A), these problems are not encountered because
a return flow or reflux is necessarily introduced by the sidewalls. To understand the
influence of bounding walls on Dp , we first discuss the main results for the distortion
of a sheet of fluid particles in a channel flow. In a bounded channel flow, a body of
volume V , whose shape is characterized by an added-mass coefficient Cm, displaces a
volume CmV forward owing to the increased residence time of fluid particles which
pass near the body. By mass conservation, there is a return flow or reflux volume
(Cm + 1)V corresponding to the sum of the drift volume and the volume of the body.
The return flow leads to a weak reflux or negative displacement, Xr , which is spread
uniformly across the channel, and is equal to

Xr =

∫ ∞

−∞

ux(x, y)

U
dx =

[φ]∞
x=−∞
U

= −V (Cm + 1)

A
. (3.18)

For bounded flows, we must also consider the influence of a return flow or reflux
on particle displacement. A translating vortex also generates a weak return flow
which tends to increase the fall speed of particles far from the vortex. The advective
timescale based on the return flow scales as A1/2/U and depends on the cross-
sectional area of the channel A. Since the pressure field decreases rapidly from the
vortex (as ∼ ρf U 2a6/r6) and the exterior flow is irrotational, both the buoyancy force
(arising from gradients in pressure) and the lift force, are negligible or zero. Thus
the inertialess approximation (described by (3.1)) is applicable in the far field because
the container size can be made large enough that the Stokes number τpU/A1/2 =
aSt/A1/2 based on the advective timescale associated with the return flow, is small.
In this limit, the reflux particle displacement is

Xr =

∫ ∞

−∞

ux(X + hL − (vT + U )t, y)

U
dt

≈
∫ ∞

−∞

ux(τ, y)

vT + U
dτ = − V (Cm + 1)

A(vT /U + 1)
, (3.19)

independent of St. Although the far-field displacement (3.19) is small, its integral
across the channel, ∫

A

Xr dA = − V (Cm + 1)

(vT /U + 1)
= − 2πa3

(vT /U + 1)
, (3.20)

is comparable to the particle drift volume. Thus for a vortex translating vertically in
a wide channel, the sum of the particle drift volume and reflux volume is

Dp − 2πa3

(vT /U + 1)
. (3.21)

For inertialess particles (St = 0), the volume displaced forward in a bounded channel
is −VS which corresponds to the volume of the shadow region.
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(a) (b) (c)

Figure 2. Trajectories of dense particles in the frame moving with the vortex are shown for
fixed vT /U = 0.1 and for (a) St = 0.01, (b) St = 0.1 and (c) St = 1.0. The edge of the vortex
is shown by the dashed curve. Note the crossing trajectories in (c).

The global kinematic constraints on the flow in terms of any bounding horizontal
walls or the manner in which the vortices are introduced into the flow have a subtle
but important effect on particle displacement. A vortex may be generated either by
the local application of a force to the fluid or by a volumetric injection of fluid
(such as from a piston). In the latter case, a volumetric source is introduced into the
flow and its contribution to the particle displacement must also be considered. In the
former case, which we consider, no source is introduced.

3.4. Numerical results for finite St

The influence of finite St and vT /U on the trajectories of particles around and
through a translating vortex was explored numerically by integrating the equation
of motion (2.18). Particles were released far above the vortex, from (hL, y0), with an
initial velocity v(0) = −vT x̂ +u(hL, y0). Providing hL/a � 1, the numerical results cor-
respond to the particles being released infinitely far above the vortex. In all the
calculations, the ratio of particle to fluid density, β , was fixed at 1000.

Figure 2 shows the trajectories of dense particles sedimenting in the frame moving
with the vortex and illustrates the significant influence of the particle Stokes number.
For low particle inertia, St 	 1, the shadow region where the particles are excluded
is roughly spherical. As St increases, the asymmetry of the shadow region increases.
Figure 2(c) illustrates the crossing of particle trajectories, which is associated with the
inertia of the particles. Note that when St = 1, the actual particle trajectories will be
influenced by history forces, and the figure illustrates the effects of increasing particle
inertia.

Figure 3 shows the trajectories of particles released close to the centreline (y0/a =
0.001) for increasing values of vT /U and for three different values of St. These figures
show the geometry of the shadow region inside the vortex and the downstream
shadow tail. For St = 0.01, the shadow region is approximately spherical and centred
on the vortex and is virtually contained within it. As vT /U increases, the radius of
the shadow region decreases until it disappears at vT /U = 3/2. As St increases, the
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(a) ( b) (c)

Increasing vT

Increasing vT Increasing vT

Figure 3. Trajectories of dense particles released close to the centreline (y0/a = 0.001) are
shown in the frame of reference moving with the vortex for (a) St = 0.01, (b) St = 0.1 and
(c) St = 1.0. The different trajectories show the effect of increasing vT /U = 0.2, 0.4, 0.6, 0.8,
1.0, 1.2 and 1.4. The dashed curve corresponds to the edge of the vortex.

asymmetry of the trajectories increases with a growing tail region below the spherical
head. Eventually the spherical part of the shadow region can no longer be clearly
identified. For St = 1, particles overshoot the particle stagnation point at the front of
the vortex, which leads to particles spending an increased time near the vortex.

The shadow region was characterized in terms of rm the minimum distance of a
particle streamline from the centre of the vortex, generated by a particle released
close to the centreline. The width of the downstream shadow region, 2w, corresponds
to the final lateral position of the particle far below the vortex, as shown in figure 4.
Figures 4(a) and 4(b) show how rm and w vary with particle fall speed (vT /U ). As
St decreases, the radius of the shadow region tends to the theoretical prediction of
(3.4) and the asymmetry of the particle separation streamline (as measured by w/a)
is reduced.

The permanent particle displacement formed by sheets of particles sedimenting
past the translating vortex are shown in figure 5. The displacement is plotted as a
function of the initial lateral position of the particle. Figure 5(a) shows the vertical
permanent particle displacement for St = 0.1 and increasing values of vT /U . When
vT /U = 3, there are no PSPs and particles sediment through the vortex so that
there is no singularity in the vertical displacement. For vT /U < 3/2, it is shown in
figure 4(b) that rm > 0 and therefore a PSP exists. Particles passing near a PSP spend
a long time there and as with fluid particle displacement near stagnation points, the
particle displacement suffers a logarithmic singularity. When St = 1 (see figure 5b),
the particles spend an increased time near the vortex because they overshoot the PSP,
and the particle displacement (which is a measure of the particle residence time near



Particles near a spherical vortex 195

(a)

0 1 2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 1 2

0.2

0.4

0.6

0.8

1.0
(b)

Decreasing
St

Decreasing
St

2w

rm

w
a

rm
a

vT /U

Figure 4. Schematic showing the shadow region generated by a particle sedimenting relative
to the vortex frame of reference. The characteristic shape is defined in terms of the final width
2w of the tail of the shadow region, and the minimum distance from the vortex centre, rm.
In (a) and (b), w and rm are plotted as functions of vT /U for St = 0.01, 0.1 and 1.0. In (b),
the minimum radius rm based on the inertialess particle approximation (3.4), St = 0, is plotted
with +. The lines for both St = 0.1 and St = 0.01 are coincident with each other and the
inertialess approximation.

the vortex) is significantly increased (compare the scales of figures 5a and 5b). In
addition, the permanent vertical displacement does not decrease monotonically with
distance from the centreline because of the circulation of particles within the vortex
at intermediate distances. Figure 5(c) shows a comparison between the displacement
field, suitably rescaled, and the prediction (3.10) with good agreement for high values
of vT /U . The lateral displacement of the particles for St = 0.1 is shown in figure 5(d).
It can be seen that for high values of vT /U it is possible for some particles to have a
negative displacement, but for low values it is always positive.

The effect of particle inertia on their divergence and lateral displacement is shown
in figure 6. The regions of the flow corresponding to ∇ · v > 0, < 0, and 0, are shown
in figure 6(a). Close to the centreline (in the white region) particle trajectories tend to
move inwards with a minimum at a distance a/

√
7 from the centreline. A comparison

between the analytical result and numerical computations for lateral displacement for
St = 0.001 and vT /U = 10 is shown in figure 6(b), and the agreement is good.

Numerical calculations for the moments of displacement (Dp , Mxx and Myy) are
shown in figure 7. For particles with small inertia, figure 7(a) shows the particle drift
volume, Dp initially increases with vT /U until it reaches a maximum when vT /U ∼ 1,
beyond which it decreases rapidly. This general trend follows that predicted by (3.6)
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Figure 5. Vertical displacement of particles, X, sedimenting through the vortex, as a function
of their initial lateral position, y0. (a) and (b) show the contrasting effect of increasing the
Stokes number from St = 0.1 (in (a)), to St = 1 (in (b)), for vT /U = 0, 0.2, 0.5, 1 and 3. (c)
shows a comparison with the rescaled X with aU/(vT + U ), and the analytical prediction (3.6)
which is based on the approximation St 	 1 and vT /U � 1. The lateral displacement, Y , is
shown in (d), St = 0.1 and vT /U = 0.0, 0.2, 0.5, 1.0 and 3.0.
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Figure 6. (a) Schematic of the regions where ∇ · v is negative, positive or zero. (b) Comparison
between an asymptotic expression for lateral displacement (3.16) in the limits of St 	 1 and
vT /U � 1 with numerical calculations for St = 0.001 and vT /U = 10.

and (3.7), which is based on the inertialess particle approximation. When vT /U > 3/2,
Dp is insensitive to St, but when vT /U > 3/2, though the trend is consistent, the
maximum value of Dp increases markedly with St. Figure 7(b)shows the variation of
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Figure 7. Variation of (a) particle drift volume, Dp , and (b) and (c) second moments of
displacement, Mxx and Myy, as functions of vT /U for St = 0.01(�), 0.1(+) and 1.0(�). The
lines represent the analytical results (3.6), (3.7) in (a), (3.11) in (b), and (3.17) in (c).

Mxx with vT /U and agrees very well with (3.11) when it can be applied, vT /U > 3/2.
As for Dp , the maximum value of Mxx increases with St, as would be expected
because as St increases the particles overshoot the PSP, which significantly increases
their residence time in this region, leading to a larger vertical displacement. The
influence of particle inertia is to lead to particles being displaced laterally so that Myy

is sensitive to St and decreases monotonically with vT /U , as shown in figure 7(c). For
small St, numerical calculations of Myy agree with (3.17).

4. Mean properties of particles settling through a random distribution
of spherical vortices

The bulk properties of particles sedimenting through a random collection of vortices
can be calculated by applying the results for the distortion of a particle sheet by one
vortex. The velocity decays rapidly with distance from the vortex, so that for a dilute
array of such vortices the hydrodynamic interaction between them is weak. As argued
by Eames & Bush (1999), the permanent distortion of a particle sheet consists of a
localized drift and a non-local reflux contribution, and when the volume fraction of
vortices α 	 1, these two effects can be superimposed to estimate the total particle
displacement.
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4.1. Bulk settling velocity

The bulk settling velocity is calculated in terms of the average distance particles move
in a time t:

〈vT 〉B = lim
t→∞

hL − 〈x(t)〉
t

, (4.1)

where 〈x(t)〉 is the vertical position of the particles averaged across the whole flow.
This definition is equivalent to the particle Lagrangian mean defined by Dávila &
Hunt (2001) and corresponds to the approach adopted by Eames & Bush (1999).

The average distance moved by the particles is related to their average vertical
displacement through

hL − 〈x(t)〉 = vT t − 〈X〉, (4.2)

where 〈X〉 is the average displacement and therefore must be the sum of the average
displacements owing to drift and reflux. Therefore, from (3.21),

〈X〉 =
1

A

∫
A

X dA =
N

A

(
Dp − 2πa3U

vT + U

)
. (4.3)

The number of vortices that have passed through the particle sheet in time t is
N = A(U + vT )tα/V , so the bulk fall velocity is

〈vT 〉B = vT − α(U + vT )

V

(
Dp − 2πa3

vT /U + 1

)
. (4.4)

This result, as with Dávila & Hunt (2001), does not depend on the vortices being
randomly positioned.

For inertialess particles (St = 0), the bulk fall speed is

〈vT 〉B = vT +
α(U + vT )VS

V
. (4.5)

Thus the increase in the fall velocity is related geometrically to the volume fraction of
shadow regions in the flow. This is an entirely general result for flows that are steady
in the frame moving with the vortex or for ‘frozen’ turbulence.

Dávila & Hunt (2001) noted that the definition of the mean fall speed of Maxey
(1987), based on randomly placing particles everywhere in the flow, leads to the
conclusion that the average fall speed for inertialess particles is equal to vT ; however,
this is only because it includes contributions from particles placed in shadow regions,
which, according to our calculations, they are not able to enter from the outside.
When vT /U > 3/2, the particles fall throughout the vortices and sample the entire
flow, so their bulk fall velocity is unchanged from vT .

Figure 8 shows the fractional increase in the bulk settling velocity as a function
of vT /U and for different values of St. The regions where 〈vT 〉B − vT is negative
correspond to where there is a decreased fall velocity owing to the increased residence
time caused by particles overshooting the PSP. The regions where 〈vT 〉B − vT is
positive correspond to where there is an increased fall velocity owing to the return
flow induced by the rising shadow region. These two physical processes are identical
to those discussed by Dávila & Hunt (2001). In the limit of vT /U → 0, the average
fall speed tends to a non-zero value, 〈vT 〉B = αU , corresponding to the volume of
the shadow region. These calculations underline that average settling properties are
sensitive to how the vortices (or turbulence) are generated (see above, § 3.3).
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Figure 8. Change in the bulk settling velocity of the particles through a random array of
steadily rising vortices as a function of the terminal fall speed for St = 0.01(�); 0.1(+) and
1.0(�). The line represents the analytical result (4.4).

4.2. Particle dispersivity

The dispersion of fluid particles by translating bodies in a bounded potential flow
was examined by Eames & Bush (1999) who related vertical fluid dispersivity D(f )

11

to Mxx. In the following problem, the lateral displacement of fluid particles that
encounter a vortex is zero, therefore the lateral fluid-particle dispersivity is zero, i.e.
D(f )

22 = D(f )
33 = 0.

The particle dispersivity arising from particles interacting with randomly positioned
vortices can be calculated by extending the methodology of Eames & Bush (1999) and
randomly superimposing the Lagrangian particle permanent displacements because
of encounters with individual vortices. This yields

D(p)
11 = lim

t→∞

〈(X − 〈X〉)2〉
2t

=
Mxx

V
α(U + vT ). (4.6)

Since the flow generated by an individual vortex is symmetric about the stagnation
streamline and the mean lateral displacement caused by an isolated vortex is zero.
The lateral dispersivity is then

D(p)
22 = D(p)

33 = lim
t→∞

1
2
〈Y 2〉
2t

=
Myy

2V
α(U + vT ). (4.7)

The factor of 1/2 arises because the coordinate axis y is the radial distance from the
centreline of a vortex.

Figure 7(b) shows the variation of Mxx with particle fall velocity; the corresponding
variation of D(p)

11 is similarly behaved and differs only by a multiplicative factor
α(U + vT ) from Mxx/V . Comparison with the results for fluid particles, where Mxx =
0.36a4, shows that for finite values of St, dense particles are dispersed vertically at a
much faster rate than fluid particles (for vT /U ∼ 1) owing to the particles overshooting
the PSP and spending an increased time in the vicinity of the vortex. As the particle
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fall velocity is increased, the particle dispersivity decreases rapidly, as

D(p)
11 =

75αUa

32(vT /U + 1)
, (4.8)

and is much smaller than that for fluid particles. The conclusion from these calcu-
lations is that the longitudinal particle dispersivity does not decrease monotonically
with fall speed, and that it decreases with the inverse of the particle fall speed for
vT /U � 1. The trend of D(p)

11 with vT is identical to that calculated by Fung et al.
(2003), with a maximum when vT is comparable to the translation speed of the vortex,
and which ultimately decreases as ∼ 1/(vT /U + 1).

Figure 7(c) shows the variation of Myy with fall speed; again the corresponding
variation of D(p)

22 and D(p)
33 behave similarly and differ only by a multiplicative

factor α(U + vT )/2 from Myy/V . Fluid particles are not dispersed laterally when they

encounter an isolated vortex, and thus the lateral dispersivity of fluid particles, D(f )
1 , is

zero. The numerical calculations show that dispersion perpendicular to the direction
of gravity is only significant for vT /U < 1, but this increases further with particle
Stokes number. As demonstrated in § 3.4, lateral dispersion arises from the inertia of
the particles. For weakly inertial particles sedimenting with a large fall velocity, the
lateral dispersivity is

D(p)
22 = D(p)

33 =
0.812αaUSt2

vT /U + 1
, (4.9)

and is thus sensitive to the particle Stokes number.
An alternative, but equivalent, view of understanding how particles are dispersed

by a random collection of vortices can be obtained by calculating the Lagrangian
autocorrelation of the particle velocity field. Equivalent definitions of the vertical and
lateral dispersivities to (4.6) and (4.7) are

D(p)
11 = lim

t→∞

〈
X

dX

dt

〉
, D(p)

22 = D(p)
33 =

1

2
lim
t→∞

〈
Y

dY

dt

〉
. (4.10)

The particle dispersivities can be re-expressed in terms of the Lagrangian autocorre-
lation functions (R11, R22)

D(p)
11 =

∫ ∞

0

R11(τ ) dτ, D(p)
22 =

∫ ∞

0

R22(τ ) dτ, (4.11)

where

R11(τ ) = 〈(vx(t) + vT )(vx(t − τ ) + vT )〉

=
α(U + vT )

V

∫ ∞

−∞
(vx(t) + vT )(vx(t − τ ) + vT ) dt dA,

R22(τ ) =
1

2
〈vy(t)vy(t − τ )〉

=
α(U + vT )

2V

∫ ∞

−∞
vy(t)vy(t − τ ) dt dA.




(4.12)

For inertialess particles (St 	 1) sedimenting rapidly through the fluid, the
Lagrangian autocorrelation functions are proportional to the velocity fluctuations
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Figure 9. The Lagrangian autocorrelation functions R11 and R22 are plotted in (a) and (b),
respectively. The full curves denote (4.13) and (4.14), respectively. The calculations correspond
to fixed St = 0.1 and vT /U=0.1 (�), 1.0 (+), 5.0 (�).

integrated over the whole flow domain (V∞) through

R11(τ ) =
α

V

∫
V∞

ux(x, y)ux(x − τ (vT + U ), y) dV∞, (4.13)

R22(τ ) =
α

2V

∫
V∞

uy(x, y)uy(x − τ (vT + U ), y) dV∞, (4.14)

because the vertical slip velocity of the particles is equal to their fall speed.
Figure 9 shows numerical calculations of the Lagrangian autocorrelation functions

as functions of the lag time τ . Since the trajectories of the particles are determined by
their initial lateral position (y0) and the fluid velocity is steady in the frame moving
with the vortex, the autocorrelation of the velocity may be calculated by tracking two
material sheets, initially separated by a distance τ (U + vT ). The full lines correspond
to the inertialess particle approximation described by (4.13) and (4.14). Figure 9(a)
shows the variation of the vertical velocity correlation (R11) as a function of τ . For
vT /U 	 1, R11 decreases rapidly with τ and has a negative minima corresponding
to τ ∼ U/a. This is associated with the fact that for τ ∼ U/a, R11 is dominated by
contributions from particles experiencing both positive fluid velocity near the front of
the vortex and negative velocity at the sides of the vortex – the advective time scale
between these two regions is a/U . For vT /U > 3/2, R11 is dominated by contributions
from particles passing through the vortex where the fluid velocity is positive and R11

is positive for all τ .
Figure 9(b) shows the variation of the lateral autocorrelation function (R22) as a

function of τ . The negative loop at τ ∼ a/(U + vT ) is associated with the fact that
particles are pushed away from the centreline above the vortex, and drawn towards
the centreline below the vortex. The integral under the R22 curve is identically zero
for inertialess particles because they are not dispersed laterally. Figure 9 shows that
the characteristic timescale over which particle velocities remain correlated scales with
a/(vT +U ). The influence of particle inertia (St) is to increase the particle slip velocity
by ∼ StU , and while the time scale over which the velocities remain correlated, which
scales as a/(vT + U ), increases with St, this is of secondary importance. From these
observations, the characteristic scales of D(p)

11 and D(p)
22 can be recovered. While the

Lagrangian autocorrelation method of calculating D(p) is identical to the particle
sheet method introduced, it is based on rather detailed calculations of the average
velocity autocorrelation functions which tend to mask the underlying physics.
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5. Concluding remarks
A detailed theoretical study of the permanent displacement of particles interacting

with a localized, steadily translating spherical vortex has been presented. To under-
stand and quantify the bulk settling properties of particles sedimenting through a
random collection of vortices, we have applied the idea of drift and developed the
concept of the particle drift volume and weighted moments of displacement. This
methodology provides a useful framework to quantify the bulk settling properties,
in particular the particle dispersivity. This approach provides a means of physically
interpreting how particles are dispersed because it is based on a detailed Lagrangian
calculation of displacement, and this can be reconciled with the less physically clear
approach that employs the Lagrangian velocity autocorrelation function. We have
been able to demonstrate that particles may be dispersed faster than fluid particles
because inertia increases particle residence time near PSPs. For large fall velocities,
particles are dispersed more slowly than fluid particles and the longitudinal dispersivity
is inversely proportional to their terminal fall speed. The lateral dispersivity is sensitive
to particle Stokes number. Although the calculations are built around a particular flow
where vortices are propagating in one direction, the underlying scalings developed for
large vT /U will be preserved for other flows dominated by coherent structures.

As with the concept of the drift volume for inviscid flows, the far field influence
of boundaries and the non-absolutely convergent nature of certain integrals needs
to be carefully considered. We have resolved the issue of the influence of bounding
vertical walls and shown that a weak reflux flow is generated by a translating vortex,
whose integrated effect has a significant influence on the bulk settling velocity of the
particles. When the flow is bounded by a horizontal surface, these new results indicate
that the mechanism by which the vortices or turbulence are generated must also be
considered because a vortex may be generated either by an input of momentum or the
injection of a finite volume of fluid. This highlights the subtle influence of the global
mass constraints and boundaries on the bulk settling properties of dense particles.

I. E. gratefully acknowledges support through an EPSRC Advanced Research
Fellowship held at University College London.
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